Lecture 12
Input/Output
(programmer view)

Computing platforms

Novosibirsk State University
University of Hertfordshire

D. Irtegov, A.Shafarenko
2018



Memory-mapped input/output

* Device can be mapped to memory address

* In next semester we will see what “mapping” actually means

* For now, let’s imagine that memory cell 0xf3 is not a memory cell

* But a register of external device

* When you read or write this register, device can perform some action

* Or vice versa, when a device performs some action, data are written
to the register (and you can read it later)



Simple device — a keyboard

* Actually, not so simple (schematics is present in CdM-8 book)

* When you press the key, 7-bit ASCII code is written to latch register
* And 8-th bit of the register is set to 1 (strobe bit).

* When you (CPU) read the register (cell at 0xf3), strobe bit is cleared
* This way you can know if the new key was pressed

* Or the same key was pressed several times



Things to consider

* For memory-mapped I/0O, CdM-8 reserves upper 16 bits of memory
* This allows for 16 devices, or, more specifically, 16 1/O registers
* Single device can have several |/O registers

* Or two devices can share one address for their registers

(e.q. one device maps register for write operations and another for
reading)

* We must move stack below i/o page before doing any push and pop
e Use addsp, not 16 push commands!



How to actually input the data?

|di rO, Oxf3
while
Id r1, rO
tstrl
stays gt
wend
* This is called busy wait



Why busy wait is good?

* It works even for simplest hardware
(better ways require special hardware support)

* It is simple to program and debug
* |t is fast



Why busy wait is bad?

* You cannot do anything else when busy waiting for a single event
* You must adapt your code when you wait for several events

* You cannot stop CPU while busy waiting
* For CdM-8§, this is not a problem
* For real CPU, it leads to high power consumption and heating

* If all CPU cores of typical modern smartphone will busy wait,
they will eat all the battery in < than a hour



Interrupt

* Interrupt is a hardware mechanism implemented in CdM-8 and most
“real” modern CPU

* Interrupts allow hardware devices to call software routines
 Typically, interrupt signals that device has some data for you
* For example, keyboard has a new key pressed

* Or network interface has a new data packet received

* This is different from pure software call, but also very similar
* Details are different between CPUs and systems

* Let’s discuss CdM-8 interrupts



Interrupts from software point of view

* Every interrupt-capable device has unigue number on range 0 to 7

* Every possible value of device numbers selects a byte pair, called
interrupt vector

* By default, interrupt vectors are mapped to upper 16 bytes of
memory

* In Manchester architecture, these are same bytes as used for memory
mapped 1/0, so you cannot use all 7 interrupts and all 16 register
addresses

* In Harvard architecture, I/O is mapped to data memory, and vectors
to program memory



But what happens when interrupt occurs?

* Device sets IRQ request on CPU input line
 When CPU finishes every instruction, it polls IRQ request line

* |f interrupts are enabled (we will discuss this later), it retrieves device
number

* Then, instead of next instruction at mem|[PC], ioi instruction is executed

* In some sence, ioi is “normal” instruction: it has an opcode, it can be inserted in a
machine code and executed like any other command

* This is called “software interrupt”
e But during interrupt, no ioi instruction is present at mem|[PC]
* But CPU behaves like it fetched this instruction



ol Instruction

* Phase 1 decrement SP for stack push

* Phase 2 store PC on stack; decrement SP for stack push
* Phase 3 store PS on stack
* Phase 4 fetch new PC value from vector’s first cell (OxfO + 2R)

* Phase 5 fetch new PS value from vector’s second cell (Oxf1 + 2R)
* It is similar to jsr, but two registers are saved (PC and PS)

* You need to use rti instruction to return from ioi routine

* And call target depends on hardware (device number R)

* So you can write separate handler routine for every device




What you can do in interrupt handler?

* Typically, interrupt signals that device has some data for you
* So you must retrieve the data
* Some devices require further instructions, what to do next

* For example, when you read data from the disk, you must tell the disk what
sector to read or write next (or not tell anything and disk will be idle)

* Then you must set some flags so main program will know the data are
ready

* Then you must return to main program (execute an rti instruction)
* Or you can do something else
* (we will discuss it in Operating Systems course)



Why interrupts are bad?

* They are asynchronous
* They can occur in any moment of program execution

. IO’IC IS \gery easy to write a handler that can break a main program (damage its
ata

* And it is very hard to catch this condition by testing
* So, there is a mechanism to disable interrupts (a flag in PS register)

* Interrupt handling is a simplest (and historically first) form of parallel
programming, and parallel programming has many pitfalls

* And most of these pitfalls are hard to avoid

* There will be courses on concurrency and parallel programming further in
our curriculum



Why interrupts are good?

* You can handle several event sources at same time
* You do not need to rewrite your program to add another event source
* You can do something useful when waiting for an event

e Operating systems use interrupts to implement multithreading and
multitasking



Ring buffer

* A simple technique which helps to avoid many pitfalls of parallel
(asynchronous) programming

* We will hear about ring buffers and queues in Operating Systems
course

* Ring buffer is very easy to implement in assembler
* In C course you’ve seen queue and stack on linked lists
* In our course, we’ve seen stack implementation on array

* Ring buffer is queue implemented on the array



Ring buffer (continued)

(@) |o]1]2]3 ) |o|1]2

b) |0]1]2]3 d |0]1]2

r M

'ﬁ‘ head pointer 1 end pointer

pointer advancement: 0=>1=>2->3=0...



How it works?

 When interrupt handler retrieves the data, it advances end pointer and
stores the data. When array ends, it wraps over (this is why it’s called a
ring buffer)

* When main program processed the data, it advances head pointer
(probably wrapping over) and retrieves the data

 When head pointer meets end pointer, queue is considered empty (main
program must wait using busy wait or wait instruction)

* Instead of busy wait, main program can tell OS not to schedule it
(but again this is topic of another course. We have no OS in our course)

* When end pointer meets head pointer, queue is considered full
(interrupt handler cannot store data and must drop new data)



Ring buffers and queues are everywhere

* Many smart peripherial devices have internal buffers or queues, so
they can send interrupts not so often, and CPU can process their data
in batches

* Many things you will see in networks and operating systems (disc
caches, pipes, sockets, network switches and routers) are ring buffers
or queues or something built around a ring buffer or queue



