
Lecture 12
Input/Output

(programmer view)
Computing platforms

Novosibirsk State University
University of Hertfordshire

D. Irtegov, A.Shafarenko
2018

Memory-mapped input/output

• Device can be mapped to memory address
• In next semester we will see what “mapping” actually means
• For now, let’s imagine that memory cell 0xf3 is not a memory cell
• But a register of external device
• When you read or write this register, device can perform some action
• Or vice versa, when a device performs some action, data are written

to the register (and you can read it later)

Simple device – a keyboard

• Actually, not so simple (schematics is present in CdM-8 book)

• When you press the key, 7-bit ASCII code is written to latch register

• And 8-th bit of the register is set to 1 (strobe bit).

• When you (CPU) read the register (cell at 0xf3), strobe bit is cleared

• This way you can know if the new key was pressed

• Or the same key was pressed several times

Things to consider

• For memory-mapped I/O, CdM-8 reserves upper 16 bits of memory
• This allows for 16 devices, or, more specifically, 16 I/O registers
• Single device can have several I/O registers
• Or two devices can share one address for their registers

(e.q. one device maps register for write operations and another for
reading)
• We must move stack below i/o page before doing any push and pop
• Use addsp, not 16 push commands!

How to actually input the data?

ldi r0, 0xf3
while

ld r1, r0
tst r1

stays gt
wend

• This is called busy wait

Why busy wait is good?

• It works even for simplest hardware
(better ways require special hardware support)
• It is simple to program and debug
• It is fast

Why busy wait is bad?

• You cannot do anything else when busy waiting for a single event
• You must adapt your code when you wait for several events
• You cannot stop CPU while busy waiting
• For CdM-8, this is not a problem
• For real CPU, it leads to high power consumption and heating
• If all CPU cores of typical modern smartphone will busy wait,

they will eat all the battery in < than a hour

Interrupt

• Interrupt is a hardware mechanism implemented in CdM-8 and most
”real” modern CPU
• Interrupts allow hardware devices to call software routines
• Typically, interrupt signals that device has some data for you
• For example, keyboard has a new key pressed
• Or network interface has a new data packet received
• This is different from pure software call, but also very similar
• Details are different between CPUs and systems
• Let’s discuss CdM-8 interrupts

Interrupts from software point of view

• Every interrupt-capable device has unique number on range 0 to 7
• Every possible value of device numbers selects a byte pair, called
interrupt vector
• By default, interrupt vectors are mapped to upper 16 bytes of

memory
• In Manchester architecture, these are same bytes as used for memory

mapped I/O, so you cannot use all 7 interrupts and all 16 register
addresses
• In Harvard architecture, I/O is mapped to data memory, and vectors

to program memory

But what happens when interrupt occurs?

• Device sets IRQ request on CPU input line

• When CPU finishes every instruction, it polls IRQ request line

• If interrupts are enabled (we will discuss this later), it retrieves device
number

• Then, instead of next instruction at mem[PC], ioi instruction is executed
• In some sence, ioi is “normal” instruction: it has an opcode, it can be inserted in a

machine code and executed like any other command
• This is called “software interrupt”

• But during interrupt, no ioi instruction is present at mem[PC]

• But CPU behaves like it fetched this instruction

Ioi instruction

• Phase 1 decrement SP for stack push
• Phase 2 store PC on stack; decrement SP for stack push
• Phase 3 store PS on stack
• Phase 4 fetch new PC value from vector’s first cell (0xf0 + 2R)
• Phase 5 fetch new PS value from vector’s second cell (0xf1 + 2R)
• It is similar to jsr, but two registers are saved (PC and PS)
• You need to use rti instruction to return from ioi routine
• And call target depends on hardware (device number R)
• So you can write separate handler routine for every device

What you can do in interrupt handler?

• Typically, interrupt signals that device has some data for you
• So you must retrieve the data
• Some devices require further instructions, what to do next
• For example, when you read data from the disk, you must tell the disk what

sector to read or write next (or not tell anything and disk will be idle)
• Then you must set some flags so main program will know the data are

ready
• Then you must return to main program (execute an rti instruction)
• Or you can do something else
• (we will discuss it in Operating Systems course)

Why interrupts are bad?

• They are asynchronous
• They can occur in any moment of program execution
• It is very easy to write a handler that can break a main program (damage its

data)
• And it is very hard to catch this condition by testing
• So, there is a mechanism to disable interrupts (a flag in PS register)
• Interrupt handling is a simplest (and historically first) form of parallel

programming, and parallel programming has many pitfalls
• And most of these pitfalls are hard to avoid
• There will be courses on concurrency and parallel programming further in

our curriculum

Why interrupts are good?

• You can handle several event sources at same time
• You do not need to rewrite your program to add another event source
• You can do something useful when waiting for an event
• Operating systems use interrupts to implement multithreading and

multitasking

Ring buffer

• A simple technique which helps to avoid many pitfalls of parallel
(asynchronous) programming
• We will hear about ring buffers and queues in Operating Systems

course
• Ring buffer is very easy to implement in assembler
• In C course you’ve seen queue and stack on linked lists
• In our course, we’ve seen stack implementation on array
• Ring buffer is queue implemented on the array

Ring buffer (continued)

How it works?

• When interrupt handler retrieves the data, it advances end pointer and
stores the data. When array ends, it wraps over (this is why it’s called a
ring buffer)
• When main program processed the data, it advances head pointer

(probably wrapping over) and retrieves the data
• When head pointer meets end pointer, queue is considered empty (main

program must wait using busy wait or wait instruction)
• Instead of busy wait, main program can tell OS not to schedule it

(but again this is topic of another course. We have no OS in our course)
• When end pointer meets head pointer, queue is considered full

(interrupt handler cannot store data and must drop new data)

Ring buffers and queues are everywhere

• Many smart peripherial devices have internal buffers or queues, so
they can send interrupts not so often, and CPU can process their data
in batches
• Many things you will see in networks and operating systems (disc

caches, pipes, sockets, network switches and routers) are ring buffers
or queues or something built around a ring buffer or queue

